
User Manuals

Professional Battery Diagnostic Device

Test Matters and Safety Measurements

This manual includes instructions for using the device, safe operation methods and how to maintain it. Failure to use the device in accordance with this manual may damage the device. This device has been designed and manufactured in accordance with the requirements of our corporate performance standards.

- The Battery pole, terminals and other accessories may contain lead or lead compounds or other regenerative injuries. If you come into contact with chemicals, wash with water.
- $2\,)\ \ Batteries\ contain\ dangerous\ chemicals\ that\ may\ cause\ burns\ or\ explosions.$
- Do not use or store this device in hot, humid, flammable or explosive environments.
- Before use, check that the test clamp insulation is intact-no tears, bare or broken wires. Please use it carefully!
- If the device is malfunctioning (e.g. damaged, deformed, leaking substances, rincomplete display, etc.). it cannot be used further.
- 6) Although the car battery voltage is lower than the safe voltage, the measurement should be done as far as possible without touching the test clamp jaws to prevent the risk of electric shock.
- Do not change the internal wiring or the connection of the clips ways in order to avoid damaging the device or causing your own insecurity.
- 8) Wear approved eye protection when testing or repairing your vehicle to prevent the engine from picking up foreign objects and flying them into your eyes.
- Operate and maintain the vehicle in a properly vented environment to prevent breathing toxic gases.
- 10) Do not place testing equipment and accessories near the engine or exhaust pipe if the engine is running, as the heat may damage them.
- Pay attention to warnings, precautions, and repair procedures from the car manufacturer when repairing your car.
- 12) When the battery is fully charged, the voltage will be slightly higher than the normal value. Please turn on the headlights for 2-3 minutes and wait for the voltage return to the normal value before measuring.
- There is no internal battery in this device, and it is charged by the battery under test.

Contents

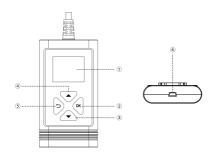
Precautions and Safety Measurements	01
1. Overview	03
2. Technical Indicators and Battery Standards	03
2-1. Technical Indicators	03
2-2. Cold Cranking Ampere (CCA) Measurement Range …	03
3. Product Structure and Panel Description	04
4. Function Use and Explanation	05
4-1. Battery Voltage Type Selection	05
4-2. Battery Test	05
A) Quick Test ·····	06
B) Accurate Test	07
4-3. Charging System Test	13
4-4. Starter System Test	15
4-5. Load System Test	17
4-6. Waveform Monitoring	19
4-7. Playback ·····	19
4-8. Records Management	21
4-9. Settings	22
5. Frequently Asked Questions	23
Vehicle Battery Analysis	26

Overview

The professional battery analyzer is a tool for testing the working capacity and performance of automotive batteries, as well as the starting process, charging process and electrical load process of the car battery performance. The battery tester is well designed, easy to operate and fully functional. The device has a 1.8-inch high-resolution color screen and backlight display, the test process and the results can be displayed on the FTF screen clearly. The uses four-wire Kelvin test connection. The design has strengthened the protection measures for the wrong connection of the input signal line, reverse connection, high connection voltage, and poor contact of the test clamp, so as to be safer and more convenient during use. This product can be used in equipment systems involving various types of lead-acid batteries, such as automobile battery production, automobile battery distribution, and auto parts maintenance. It is an ideal tool for testing the performance of lead-acid batteries.

2. Technical Specifications and Battery Standards

2-1. Technical Indicators:


Products		
Applications	6V starter lead-acid battery Supports AGM/EFB start/stop batteries	12V starter lead-acid battery Supports AGM/EFB start/stop batteries
Battery Capacity	3AH ~ 220AH	30AH ~ 220AH
CCA Measurements	100 - 2000	100 ~ 2000
Voltage Measurement	5V ~ 20V	5V ~ 20V
Working Temperature	-20°C ~ 60°C	-20°C ~ 60°C
Measurement Method	Four-line Kelvin Test	Four-line Kelvin Test

2-2. Cold Cranking Ampere (CCA) Measurement Range:

Standard	Description	Scope
CCA	CCA	100 ~ 2000
IEC	International Electrotechnical Commission Standards	100 ~ 1000
EN	European Industrial Standards	100 ~ 2000
DIN	German Industrial Standards	100 ~ 1000
JIS#(注)	Japanese Industrial Standards	From 26A17 to 245H52
SAE	Automotive Engineering Association Standards	100 - 2000

Note: JIS# needs to check the table to compare with CCA, SAE refer to CCA.

3. Product Structure and Panel Description

- (1) Display—Visual display, 160 x 128 resolution, TFT true color screen.
- (2) OK Key—Confirm the selected content and enter the function.
- (3) Down Key—Use the down keys to select between each screen for increasing and flipping functions.
- (4) Up Key—Use the up key to select between each screen for decreasing and flipping functions.
- (5) Back Key——Cancel the selection, undo, or return to the previous screen.
- (6) USB interface—Connect the USB to the computer and the removable disk will be displayed. Simply copy and paste the upgrade file into the removable disk to complete the upgrade.
- (7) Up + Down Keys ——Screen capture function. (The device stores up to 10 pictures.)

4. Function Usage and Description

4-1. Selection Of Battery Voltage Type:

Before testing, you need to set the test battery voltage according to the battery voltage type. Select 6V test item corresponding to 6V battery; select 12V test item for 12V battery.

After selecting the battery voltage, enter the next project test work. Take the selection of 12V as an example:

4-2. Battery Test:

The battery tester has two types of test settings: Quick Test and Accurate Test.

Quick Test: It is convenient to roughly determine the Cold Cranking Ampere (CCA) of the battery according to the battery capacity when the accurate CCA reference parameters of the battery cannot be obtained from the battery as the basis for judging the test results. This method has a certain ranee of reference significance.

Accurate Test: The user tests the battery by obtaining the exact CCA parameter from the battery and setting the benchmark accordingly.

Note: Because the CCA factory parameters of each battery are not the same, even if different series of batteries with the same brand and capacity have different CCA factory parameters, so if the user can get the accurate CCA parameters of the battery. It is recommended to use accurate test methods to test the battery.

4-2-1. Pre-test Preparation:

- If the car is being started, turn off the engine and turn the car lock key to the "OFF" position.
- After the vehicle has been running for a while, the voltage of the battery will be slightly higher than the normal value when it is fully charged. Please turn it on for 2 to 3 minutes and wait for the voltage return to the normal value before measuring.

3) Observe the standard parameters of CCA on the battery under test and the CCA unit of the battery. If there is no relevant parameter on the battery under test, it can be measured by the local quick measuring method.

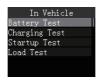
4-2-2. Operational Steps:

- A) Quick Test (Note: Quick test is simulated AH battery capacity test, the accuracy of quick test is lower than accurate test, it is recommended to use accurate test for testing!)
- The test clamp connects the positive and negative pole of the battery under test. Note: It is important to check for good contact and not to catch on the extension bars. If there is an iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole or test after unloading the iron hoop.
- 2) Press the \triangle \triangle \triangle \forall \triangle key to select the quick test item and then press the \triangle Key to enter the selection. As shown:

3) Press the [^] △ [^] ✓ [^] × key to adjust the AH battery capacity standard value of the battery under test (take a 60AH standard \$80CCA battery as an example), and long press the [^] △ [^] ✓ key to achieve continuous numerical adjustment. As shown:

4) After adjusting the standard value, press the \langle OK $^{>}$ button to start the test, and press the \langle \triangle $^{>}$ \langle ∇ $^{>}$ button to view the battery life (SOH) and

battery power (SOC) of the battery. The test results are as follows:



B) Accurate Test:

- The test clamp connects the positive and negative pole of the battery under test. Note: It is important to check for good contact and not to catch on the extension bars. If there is an iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole or test after unloading the iron hoop.
- 2) Press the < ♠ > < ♥ > key to select the in-car test item and then press the < OK > key to enter the selection. As shown:

Press the < ▲ > < ▼ > key to select the battery test item and then press the < OK > key to enter the selection. As shown:

4) Select the tested battery type. Press < ▲ > < ▼ > key to select the c-

orresponding type and then press \le OK \ge key to enter the selection (take an ordinary battery as an example) . As shown:

(This product has the line protection function, the wrong battery type test will not damage the device, feel free to use.)

5) According to the standard of the battery, press (▲) (♥ key to choose the test standard, if the battery is "JIS" standard, you can directly input CCA (when CCA parameters are known) or select "CCA" after checking the table. "(SAE) as a test standard (find the JIS setting operation item) selected test standard and press the 'OK' key to enter the selection. As shown:

6) According to the standard value marked on the battery under test, press $\leq \mathbf{k} \geq \langle \mathbf{V} \rangle$ key to adjust the battery testing reference standard value (taking a standard SOOCCA battery as an example), long press $\leq \mathbf{k} \geq \langle \mathbf{V} \rangle$ key to achieve continuous adjustment of the value. As shown:

7) After adjusting the standard value, press the ⊆OK⊃ key to carry out the test, and press the ⊆A⊃ ⊆ V ≥ keys to check the battery life (SOH) and battery capacity (SOC) respectively. The test results are as follows:

4-2-3. Description of battery test results:

* Normal test results, as shown:

Battery Voltage: 12.7V, Normal Voltage.

Under normal circumstances, when the car battery has no load (not started), the voltage shouldbe $12.30V \sim 13.00V$, which is the best, if it is lower than 12.30V, it will be a power loss or aging condition.

Battery Voltage	Volume Of Battery Voltage	Description Of Remarks
12.78V	100%	Fully charged
12,54V	75%	
12.30V	50%	
12,12V	25%	Discharged
11,94V	0%	

CCA Value: 500 CCA

The test determines the actual output cold cranking ampere of the battery. Generally speaking, there is a minimum CCA standard for cars (gasoline

 \prime diesel) when starting, and it is best if the output CCA of the battery is higher than the starting standard of the car.

Internal Resistance: 5.6mΩ

The higher the CCA value of the battery, the lower the internal resistance will generally be.

Notice: The standard of internal resistance varies depending on the battery made of different materials used by various manufacturers, so there is no certain standard. However, for batteries of the same model from the same manufacturer, the internal resistance values will not differ too much when leaving the factory.

Life: The life measured and evaluated by the instrument is the use state of the battery under comprehensive operating conditions. It is recommended to replace the battery when the battery life is less than 45%.

★ It is recommended to replace the test results:

In the test result, the battery life is only 30%, and its performance is poor, so it is recommended to replace it.

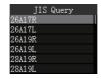
★ The life test is normal, and the battery voltage is low:

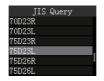
Test results: In the test results, the battery life is 81%, but the battery voltage is only 12.0V, and it is performance is normal. The life test is normal, and the battery voltage is too low:

Test results: In the test result, the battery voltage is only 10.8V, and the voltage is too low, which may affect the test result. At this time, it is recommended to charge the battery before testing.

4-2-4. JIS# Standard naming battery starting current standard setting:

 Regarding the battery named after the JIS# standard, if the value of the battery starting current can be found on the surface of the battery body, the value will be used as the test judgment standard during the test. In the battery test-operation steps-accurate Select "JIS" in step 5 of the test. As shown:


2) Then select the "Manual Input" item to manually adjust the reference standard value of the battery starting current for testing. As shown:


3) If the value is not marked on the battery body, the user can use the J-IS model of the battery to call the reference standard value of the battery starting current according to the model, through the "Auto Lookup" item in the instrument, and press the 'OK' key to enter the next step. As shown:

- 4) After entering the automatic table lookup interface, press the < ▲ >
 ▼ > key to turn the page, and you can find the battery specification to be tes-
- > key to turn the page, and you can find the battery specification to be tested according to the sequence number. As shown:

5) After finding the corresponding model of the battery under test (take a model of "75D23L" battery as an example) , press the $^{\zeta}$ OK $^{\rangle}$ key to enter the selection interface. As shown:

6) Press the ⊆ ▲ > ∈ ▼ > key and the ⊆ OK > key to select the model marked on the last battery (take a model "75D23L MF" battery as an example). As shown:

7) At this time, press the < OK > key to start the battery test.

4-3. Charging System Test:

4-3-1. Preparation before the test:

★ If the car is in the flameout state, please start the car engine first.

4-3-2. Operation Steps:

- 1) When the car is in the starting state, the test damp is connected to the positive and negative poles of the battery under test. Attention must be praid to check whether there is good contact. Do not damp it on the iron frame of the extended vehicle body. If there is iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole, or test after unloading the iron hoop.
- 2) Press < ▲ > < ▼ > key to select the charging test item, and then press < OK > to enter the test. As shown:

3) Enter the ripple test interface, the smaller the waveform float, the more stable the voltage. As shown:

4) After waiting for 10 seconds on the ripple test interface, the instrument will prompt the following interface:

5) After operating as prompted in step 4, press the $^{<}$ OK $^{>}$ key to obtain the charging test result. As shown:

The final charging test result shows: normal (indicating that the battery is charged normally); output is high (indicating that the battery charging voltage is too high); there is no output (indicating that the battery is not charging).

4-3-3. Charging test instructions:

- ★ If the voltage reading is greater than 15.0V, please check the voltage regulator.
- ★ If the voltage reading is less than 13.3V, please check the connection points, wires and engine.

Dat	Data Reference Table(12V System)	
Status	Battery Voltage	Engine Output
(Need to step on the acc-	14.5V the above	High (need to enter the factory for inspection)
	13.6 ~ 14.5V	Normal
	13.6V the following	No output, battery may be damaged

4-4. Start Test Of Starter System:

4-4-1. Preparation before test:

 \star If the car is starting, please turn off the engine and turn the car lock key to the "OFF" position.

4-4-2. Operation Steps:

- The test clamp is connected to the positive and negative poles of the battery under test. Note that you must check for good contact and do not clamp it on the extension body iron frame. If there is an iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole or test after unloading the iron hoop.
- 2) Press the \langle \blacktriangle \rangle \langle \blacktriangledown \rangle key to select the start test item and then press the \langle OK \rangle key to enter the test. As shown:

3) After entering the startup test, the instrument will prompt the following interface:

 After completing the operation according to the prompt, you can get the start load test result. As shown:

The figure respectively shows that the starting voltage in the current starting process is 10.16V, the starting time is 320ms, and the final starting ability test result is normal.

4-4-3. Instructions for starting load test:

★ If the starting voltage reading is greater than 9.6V, it means that the walking system is good.

★ If the starting voltage reading is less than 9.6V, it means there is a problem with the starting system.

Please check related parts such as connection points, wires and starters, and battery terminals for corrosion.

Dat	ta Reference Table(12V Syster	
Start Meter Voltage	Battery Starting Ability	Dispose Of Batteries
13.5V the above	Low	Need to return to the fact- ory for maintenance
9.6 - 13.5V	Normal	Normal
9.6V the following	Low	Need to return to the fact- ory for maintenance

4-5. Load System Test:

4-5-1. Preparation before test:

★ If the car is turned off, please start the car engine first.

4-5-2. Operation Steps:

- When the car is in the starting state, the test clamp is connected to the positive and negative ptoles of the testing battery. Note that you must chekfor good contact and do not clamp it on the extension body iron frame. If there is an iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole or test after unloading the iron hoop.
- 2) Press the \le \blacktriangle \ge \le \blacktriangledown \ge key to select the load test item and then press the \le OK \ge key to test. As shown:

3) After entering the load test, the instrument will prompt the following interface:

4) After operating as prompted in step 3, press < OK > to get the load test result, as shown in the figure:

The figure shows that the current test voltage is 13.06V, the standard voltage is 12.80V, and the lowest voltage is 12.86V.

4-5-3. Description of load system:

- ★ Read the lowest voltage value. If the voltage reading is greater than 12.80V, it means that the load system is normal.
- ★ Read the lowest voltage value. If the voltage reading is less than 12. 80V, please check whether the generator belt is worn out and the wires are short-circuited.

4-6. Waveform Monitoring Function:

- The test clamp is connected to the positive and negative poles of the testing battery. Note that you must check for good contact, and do not clamp it to the extension body iron frame. If there is an iron hoop on the battery pole, please ensure that the iron hoop is in good contact with the battery pole or test after unloading the iron hoop.
- 2) Enter the waveform interface press the $\langle A \rangle \langle \nabla \rangle$ key to select the waveform monitoring item and then press the $\langle OK \rangle$ key to enter the test. As shown:


3) Enter the waveform monitoring interface, you can monitor voltage fluctuations in real time, and the device will automatically save the records. As shown in the figure:

The figure shows that the current test voltage is 12.1V, the minimum voltage is 10.8V, and the maximum voltage is 13.2V.

4-7. Playback Function:

1) Enter the waveform interface Press the ⊆ ▲ > ∈ ▼ > key to select the waveform playback item and then press the ⊆ OK > key to enter the selection. As shown:

 Press the < ▲ > < ▼ > key to choose to playback the saved waveform monitoring record (take WAVEFORM1 as an example) , and then press the < OK > key to view the playback. As shown:

Note: The first saved waveform monitoring record is sequence 1, which is sorted in order. The device can save up to 10 records. After more than 10, the saved records will overwrite the previous saved records.

3) After entering the playback, the instrument will prompt the following interface, press the \langle OK \rangle key to play again, and press \langle Back \rangle to exit the playback. As shown:

 Clear the waveform record. Press the < ▲ > < ▼ > key to select the clear record item and then press the < OK > key to delete all saved records. As shown:

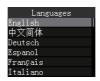
4-8. Record Management Function:

 View records. In the main menu, press the < ▲ > < ▼ > key to select the record management item and then press the < OK > key to enter the selection interface. As shown:

2) Press the \leq \blacktriangle \geq < \blacktriangledown > key to select the last test record item and then press the \leq OK > key to view the record. As shown:

	Last	Record
R		5.6mΩ
CCA		514A
STD		500A
VOL		12.7V
SOH		100%
SOC		98%

The test records in the figure respectively show R (resistance) 5.6mΩ; standard CCA is 514A; rated CCA is 500A; VOL (voltage) is 12.7V; SOH (battery life) 100%; SOC (battery power) 98%; RESULT: Retest After Charged. $\textbf{Note:} \ \ \text{Record management can only record the test results of the battery test, and can only save one record (the most recent battery test result).}$


3) Delete records. Press the $\langle A \rangle \langle \nabla \rangle$ key to select the delete record item and then press the $\langle OK \rangle$ key to delete.

4-9. Setting Function:

In the main menu, press the $\neg \land \blacktriangle \lor \lnot \blacktriangledown \lor$ key to select the setting item and then press the $\neg \land \lor \lor$ key to enter the setting. As shown:

4-9-1, Language selection:

4-9-2. System self-check:

- A) LCD Self-Test: It is used to detect whether there are dead pixels on the display of the device, to avoid the incomplete display of the screen content;
 - B) Keyboard Self-Test: It is used to detect whether the keys of the dev-

ice are malfunctioning and unusable;

C) Buzzer Self-Test: It is used to check whether the prompt tone and key tone of the device are normal.

4-9-3. Buzzer:

Enter the buzzer interface, press the $\land \blacktriangle \land \blacktriangledown \land \ker$ key to select the on/off the item, and then press the \land OK \lor key to confirm. as the picture shows:

5. Frequently Asked Questions

5-1. The measuring principle of this tester?

As time goes by, the battery will gradually age. The main reason is that the surface of the battery plate is aging and can no longer carry out effective chemical reactions. This is the main reason why most batteries cannot continue to be used. The International Institute of Electrical and Electronics Engineers (IEEE) formally adopted the conductance test method as one of the testing standards for the detection of lead-acid batteries. The IEEE standard 1118 - 1996 clearly pointed out: "The measurement of battery conductance is to use an AC signal of known frequency and amplitude Add it to both ends of the battery, and then measure the generated alternating current. The alternating current conductance value is the ratio of the alternating current signal that is in phase with the alternating voltage to the alternating voltage. "This product is developed based on this judgment.

5-2. If the reverse current is installed on the car, will it affect the result?

All reverse currents will affect the test results of the instrument, so please remove the reverse current before measuring to ensure the accuracy of the test.

5-3. Can this product accurately predict when the battery will expire?

The internal resistance of a sealed lead-acid battery is complicated, which includes the ohmic internal resistance of the battery, the internal resistance of the concentration difference polarization, the internal resistance of the electrochemical reaction, and the interference effect during charging of the double-layer capacitor. The components contained in the internal resistance values are measured with different test methods, at different times and their relative contents are different, so the measured internal resistance values are also different. There is no strict mathematical relationship between the internal resistance (or conductance) of the sealed lead battery and the battery capacity, and it is impossible to predict the battery life based on the internal resistance (or conductance) of a single battery. But when the internal resistance of the battery is a should be decreases suddenly, it indicates that the battery life is about to end.

5-4. Is the CCA value measured by this product correct?

CCA is a control standard during battery production. According to the accumulated results, the new battery measured value will be higher than the Iabel value (10% ~ 15%). As the change of user's use condition, it will be closer to the label value and then lower than the label value.

5-5. The difference between this product test method and the load test method?

★ Load test method:

According to the physical formula R=V/1, the test equipment forces the battery to pass a large constant direct-current in a short period of time (susally 2 – 3 seconds) (currently, a large current of 40A – 80A is generally used). Measure the voltage across the battery at this time, and calculate the current battery internal resistance according to the formula. This method has obvious shortcominos:

1) Only large-capacity batteries or batteries accumulators can be measured. Small-capacity batteries cannot load a large current of 40A ~ 80A wit-

hin 2 to 3 seconds.

- 2) When the battery passes a large current, the electrodes inside the battery will be polarized, resulting in polarized internal resistance. Therefore, the measurement time must be very short, otherwise, the measured internal resistance has a large error.
- 3) High current passing through the battery will damage the internal electrodes of the battery.

★ Test method of this product:

The battery is actually equivalent to an active resistance because we apply a fixed frequency and a fixed current \(\) to the battery, then sample its voltage and calculate the internal resistance of the battery through the arithmetic circuit after a series of processing such as rectification and filtering. The advantages of this method:

- This method can be used to measure almost batteries, including small-capacity batteries. It is generally used to measure the internal resistance of lapton batteries.
 - 2) This method will not cause much damage to the battery itself.

5-6. Other Instructions

A) Quick Test

The quick test is to use the capacity (AH) marked by the battery to detect the life of the battery. The amount of charge that a battery can hold is the "capacity" of the battery, which is characterized by "Ah" and the symbol "Ah".

For example 120Ah. According to national standards, the battery capacity is specified as a 20-hour discharge rate. For a 120Ah battery, it is discharged with a current of 6A and can be discharged for 20 hours. The battery capacity (AH) is always constant, and AH can only be used to roughly determine the battery life. This meter does not have a discharge function. It uses analog methods to measure AH. The measured parameters are voltage, internal resistance, and actual CCA. Other data are only for reference.

B) Accurate Test

The accurate test is to use the Cold Cranking Ampere (CCA) marked by the battery to detect the life of the battery. The CCA value refers to: under a certain low-temperature state (usually specified at 0°F or -17.8°C). The amount currently released by the battery for consecutive 30 seconds before the voltage drops to the limit depletion voltage.

1) CCA has nothing to do with battery capacity.

For example, there is a 12-volt battery casing marked with a CCA value of 600, which means that at 0°F, before the voltage drops to 7.2 volts, it can provide 600 amperes for 30 seconds.

- For a 600CCA battery, if it is detected as 480CCA by the device that does not mean the battery capacity has become 80% of the original.
- 3) The high or low value of CCA is the main factor that really affects battery life. The battery with too low CCA value is difficult to start after ignition, which has a great relationship with the quality and uses the time of the batteryl And it has nothing to do with the battery capacity (AH).

6. Analysis of Car Battery

6-1. Different types of batteries have different internal resistances:

The same type of battery has different internal resistance due to inconsistent internal chemical characteristics. The internal resistance of the battery is very small, we generally use the unit of milliohm to define it. Internal resistance is an important technical indicator to measure battery performance. Under normal circumstances, a battery with a small internal resistance has a strong high-current discharge performance, and a battery with a large internal resistance has a weak discharge capacity.

6-2. The battery's capacity can't be measured by feeling:

You can use a hydrometer to measure the working status of the battery.

The battery water is prepared with the specific gravity of distilled water + pure sulfuric acid at 1.260 / 20°C. For the new battery, if the battery water volume is within the normal range. the acidity is fixed. If the battery water is less, add

distilled water, except for maintenance In addition to a certain amount of water, the pH value can also be maintained. If the battery is working normally, in addition to the fixed pH value, the specific gravity value will also be in a certain range.

Voltage (V)	Electricity (%)	Proportion
12.7 the above	100%	1,26 - 1,28
12.6	90%	1.24
12.4	70 ~ 80%	1.22
12,1	50%	1,16
12 the following	25%	1,13 the following

If the specific gravity value of the battery water cannot reach 1.26-1.28 after being fully charged, and the measured voltage cannot reach 12.7V or more, it means that the battery's capacity has dropped. At this time, If you deliberately adjust the specific gravity of the battery water to 1.26 (increasing the ratio of sulfuric acid to water), not only the battery cannot be repaired, but it will also speed up the scrapping of the battery, because the acidity of the bottled water will also increase, therefore this method can't increase the voltage.

6-3. The meaning of common battery standard abbreviations:

★ RC—Reserve Capacity:

At 80°F (27°C) , each battery has an average load of 25 amperes of electricity per minute and can maintain a minimum voltage of about 10.5 volts.

★ CCA—Cold Cranking Ampere:

Under the solid current intensity, each battery that is cooled and immersed in 0°F (-18° C) $\sim -20^{\circ}$ F (-29° C) can last 30 seconds and maintain a minimum voltage of 72 volts. The unit of cold start current is ampere. General vehicles, especially those that are too old, often fail to start the engine smoothly when the motor is turned on and must be maintained for more than a few seconds or start for the second time. In fact, the battery consumes the most power when starting the engine, the voltage of the battery can drop from the normal 12.5V to 10.5V or even below at the moment of high current output in a short time. The greater the Cold Cranking Ampere, the greater the effect on improving the start-up irregularity.

* CA-Cranking Ampere:

Its main meaning is similar to CCA, and the unit is also ampere. The only difference from CCA is the temperature at the time of measurement. CCA is the result obtained in an environment of minus 17.8°C, and CA is the result obtained in an environment of zero Celsius. If both CCA and CA are marked on the same battery, the value of CCA will be lower than that of CA, because of the lower the temperature, the worse the performance of the battery.

★ AH—Ampere Hour:

It is a standard established by the Japanese Industrial Standards (JIS). Simply put, the battery can last for 20 hours when discharged at a fixed amperage and the voltage is maintained above 10.5 volts. This fixed amperage is multiplied by the number of hours, which is the ampere-hour. For example, if the battery is discharged at 20 amperes for 20 hours, the ampere-hours of the battery are 400 AH.

★ DIN—German System Standard:

At a cold temperature of 0°F (-18° C), the battery's reachable amperage is 9.0 volts for 30 seconds, and maintains the minimum voltage, while at 8.0 volts for 150 seconds.

★ IEC—International Electronic Technology Association:

At the average current intensity, each battery that is cooled and immersed at 0°F (-18°C) can carry a minimum voltage of 8.4 volts for 60 seconds.

★ BSR-British Verification Standard:

At the average current intensity, each battery that is cooled and immersed at 0°F (-18°C) can be loaded with a minimum voltage of 6.0 volts for 180 seconds.

★ BCI—International Battery Association:

At the average current intensity, each battery that is cooled and immersed in 0°F (-18° C) \sim -20°F (-29° C) can carry a minimum voltage of 7.2 volts for 30 seconds.

Version Number: A02